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Abstract. A formalism is described for calculating the mode conversion induced in a straight 
waveguide by imperfections which break its translational symmetry, and in one whose 
direction changes along its length. The method employs ‘quasimodes’ which are adapted 
to the local nature of the guide. The method is particularly useful when the spatial frequency 
of the imperfections is small compared with the differences in wavenumbers of the guided 
modes involved or when the radius of a bend is much greater than the width of the guide. 

1. Introduction 

I t  is well known that straight dielectric and metal waveguides whose properties are 
constant along their length support spectra of propagating, radiation and evanescent 
electromagnetic modes. Any imperfection in a guide which breaks its translational 
symmetry will change the properties of its modes. It is often convenient to think of the 
imperfection as a perturbation which converts power between modes of the perfect 
guide. 

The quantum-mechanical analogy of a potential varying in time (eg Schiff 1968, p 
280) has been persued by Marcuse (1969) to develop a perturbation formalism for 
calculating the extent of mode conversion in dielectric waveguides. Such a theory 
imposes no condition on the spatial frequency of the perturbation, but requires it to be of 
small amplitude. It is, indeed, a perturbation theory, as it assumes that the real guide 
does not differ greatly from the perfect one. 

Snyder (1970, 1971) has developed an alternative method for calculating the mode 
conversion in a straight guide whose properties (cross section, dielectric constant and 
relative permeability) change along its length. We have developed independently a 
formalism which is mathematically equivalent to Snyder’s but whose derivation shows 
the close analogy between the method and that of the adiabatic approximation (Schiff 
1968, p 289) used in quantum mechanics to treat a potential which varies in time. Our 
paper describes this method paying full attention to problems of completeness, ortho- 
gonality and the unity of the quasimodes which arise in the development. 

The interest in this adiabatic procedure arises from the possibility of using optical 
fibres as waveguides for communication systems. In such guides the radiation wavelength 
is invariably small compared with the spatial range of the imperfections which them- 
selves may be large in amplitude. Analogously the adiabatic approximation is known to 
be useful in quantum mechanics for an arbitrarily large change in potential provided the 
change takes place slowly on a time scale determined by the frequency differences of 
energy eigenstates. 
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We also present an adiabatic method for treating mode conversion in a bending 
waveguide. This problem has also been considered by Bahar (1969). In this case there is 
no alternative perturbation treatment since a bent guide can in no satisfactory way be 
considered a small perturbation on a straight one. 

The method which we use and the physical arguments behind it are as follows. 
The problem is to solve Maxwell’s equations in the vicinity of the slowly varying 

bending waveguide. In general this is difficult because of the lack of translational 
symmetry. To re-introduce this symmetry we construct at each point z measured along 
the guide an imaginary, straight guide whose properties are constant along its length and 
coincide with those of the real guide at z (figures 1 and 2). 

, Imaginary 
/ guide 

/ / 

Imaginary guide 

Real guide *I 
/ 

P I  guide 

Figure 1. Slowly varying linear waveguide. Figure 2. Slowly bending waveguide. 

We can solve Maxwell’s equations for these imaginary guides since they are straight 
and uniform. From these solutions we construct the quasimodes, sets of electromagnetic 
fields which satisfy the appropriate boundary conditions at each point z along the guide. 
These quasimodes are not eigenmodes of the real guide but they form a complete set and 
are ‘almost’ eigenmodes if the variations are slow or the bends are gentle. We now 
expand the true fields in terms of these quasimodes and by forcing this expansion to 
satisfy Maxwell’s equations we can determine its coefficients. In this way we solve the 
problem of quasimode conversion and hence of mode conversion since as the guide 
becomes straight and constant the quasimodes collapse into eigenmodes. 

In 8 2.1 quasimodes for an imperfect linear guide are described and their properties 
discussed. Section 2.2 considers the expansion of the solution in terms of these quasi- 
modes and a formal solution is derived in § 2.3 equivalent to that obtained by Snyder 
(1970). Section 3.1 solves the problem of the bending waveguide of which a simple 
example is illustrated in 0 3.2. 

Application to the more complicated structure of optical fibres will be the subject of 
later work. 

2. The imperfect straight guide 

2.1. Quasimode formalism 

The electromagnetic field in the vicinity of a waveguide must satisfy Maxwell’s equations : 

V . D  = V . t E  = 0 

V . B = V . p H  = 0 
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where we allow E and p to vary in space and we have assumed a time variation proportion- 
al to e-'"'. Equations (1) and ( 2 )  follow automatically from (3) and (4), but are included 
here because they are used explicitly later on. Gaussian units are used throughout this 
paper. 

We consider a system of coordinates with guide axis in the z direction z 3 .  The choice 
of axis may be somewhat arbitrary for an imperfect guide. Since the solution must be 
independent of this choice we suppose it made for convenience. We imagine constructed 
a perfect guide whose properties throughout its length are those of the real guide at z. If 
we call z' the coordinate along this imaginary guide then its eigenmodes will be solutions 
of equations (1)-(4) with V replaced by 

a a  a 
V' E ~ 1 - + ~ 2 - + ~ 3 - ;  ax ay  a Z  

Because the imaginary guide is perfect the z' dependence of the modes will be pro- 
portional to exp(fik,(z)z') for forward or backward waves, where k,(z) is the wave- 
number, depending on z through the cross section of the real guide chosen as a template 
for the imaginary one. The x, y dependence of the forward/backward (+) modes will 
satisfy the equations 

(VI + ikn(z)z3). cE:(x, y ;  z )  = 0 

(V,  + ik,(z)z3). pH,'(x, y : z) = 0 

i o c  
(VI f ikn(z)z3) x H,'(x, y ;  z )  = --E:(x, y ;  z) 

C 

where 

a a v, 3 E1-+E2-. ax ay  
The z dependence of E:, H,' and k ,  will be slow compared with the z' dependence of 

From these equations for E,' and H,' we can derive (appendix 1) the wave equations 
exp( f ik,(z)z') since the former originates from the slow imperfections. 

obeyed by their transverse components : 

These equations, together with the boundary conditions, constitute an eigenvalue 
equation for the transverse fields and wavenumbers. The longitudinal components 
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follow from the transverse components when we consider equations (7) and (8) resolved 
along c3 : 

When c and pare  piecewise independent of x and y with discontinuities at boundaries 
then equations (9) become 

and the variations of c and p appear in the boundary conditions. 
We shall continue to define E,' and H,' via equations (9)-( 11). These are solutions 

of an eigenvalue problem and so form a complete set in x, y ;  hence we can express any 
field generated by a source in the vicinity of the guide as a linear combination of these 
solutions. Their orthonormality properties are discussed in appendix 2. I t  is found that 

H;, x E; . d S  = constant x d,, s 
where the constant depends on the normalization and the Kronecker delta symbol is 
replaced by a Dirac delta function for continuum modes. The integral is over the area of 
the plane perpendicular to the axis. 

The quasimodes of the real guide are constructed as follows : 

The fields are those appropriate to the form of the guide at z ;  the phase is the total of 

These quasimodes satisfy : 
(i) the boundary conditions at any point on the real guide ; 

(ii) Maxwell's equations, provided we ignore all z dependences except those in the 

Clearly as the real guide becomes uniform its quasimodes collapse into its eigenmodes. 

the increments previously acquired along the guide. 

exponents. 

2.2. The expansion 
The fields are expanded as 

where C, represents a sum over all discrete modes and an integral over any continuum 
modes, and the A:(z) are to be determined. 

The assumption that this expansion is permissible, that the A,'(z) are not over- or 
under-determined, needs justifying. 
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To do this we observe that since the eigenfunctions E:(x, y ;  z) of (9) belong to the 
same eigenvalue, k;(z), we are at liberty to chose 

E$(x, y ; z) = Ez(x ,  y ; z) E&, y ; z), say. (1 6 4  

For the same reason H ;  are multiples of one another and having chosen (16a) it follows 
from equations (9, (6), (10) and (11) that 

H:(x, y ; Z) = - H ~ ( x ,  y ; Z) 3 Hnt(x, Y ; z), say. (1 6b) 

By writing the transverse components of the expansion (15) in terms of E,,, and H,,, and 
bearing in mind the completeness properties of these transverse fields, it is clear that the 
arbitrariness is just necessary and sufficient. We can now write the orthogonality relation 
(13) as 

H,, x E,,,. d S  = constant x &,. s 
To see that the longitudinal component of the expansion (15) is also correct we 

merely have to operate on its transverse components with V, x and use the relations (l), 
(2) ,  (lo), and (1 1) from which the z components of (15) follow immediately. 

We have thus been able to show that it is permissible to expand the electromagnetic 
field of the guide in terms of the quasimodes. 

2.3. Formal solution 

We have now to determine the coefficients A’(z) by making the expansions (15) satisfy 
Maxwell’s equations. Substituting for E and H from equations (15) on the left of (3) and 
(4) we find 

+ 1 n i b ; ( z ) (  z)}  enp( - i kn(z’) dz’) = 0. 

By operating on (17a) with V, and simplifying with (10) and (11) we can find relations 
involving the longitudinal components : 

+ n 1 :{ Ai(z)( PHi  ) } exp( - i k,,(z’) dz’) = 0. 

Equations (17b) could also have been derived directly from the expansions (15) and 
Maxwell’s equations (1) and (2 ) .  

It remains to extract explicit expressions for the A’(z). Equations (17) constitute 
six sets of scalar equations which (consistently) over-determine the two sets of quantities 
A:(z). Since in some cases the axial components of E o r  Hvanish so that their associated 
equations are satisfied identically, we choose to deal with the equations involving the 
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transverse fields. I t  is easily shown that these equations are always nontrivial. The 
transverse equations can be simplified with our convention (16) to read 

(18) 

(19) 1 --(A: 2 Hnl) exp ( + i  s’ k,(z’) dz‘ ) - Tz(A;Hn,)exp( a - - i rkn(z‘ )dz’ )  = 0. 
n az  

Operating on (18) and (19) with H,, x and E,, x respectively, assuming them normalized 
correctly and using (1 3 4  we find 

d Z  exp( + i s’ k,(z’) dz’) +% exp( - i s’ k,(z‘) dz’) 

- A, j H,, xdz. dSexp ( - i  [ k,(z’) dz’) 

and 

ZA,+ ?A; 
- 2Z exp( + i s; k,(z‘) dz’) -x exp( - i  s; k,(z’) dzr) 

Adding and subtracting equations (20) and (21) we have 

where 

C$ = ( *E,, x-- aHnt H,, x s) . d S  
2 d Z  aZ 

and 

(k,(z’)+ k,(z’)) dz’ 

These equations, together with initial conditions on the A’(z) constitute an exact, 
formal solution to the problem. 

To integrate them exactly is difficult since the right-hand side contains the unknowns 
A:(z). We can integrate them approximately, however, by observing that the right- 
hand side contains terms aEn,laz or aH,,/az. Since E,, and Hnl depend on z only because 
the guide is changing, and since this change is slow, their derivatives will be small. We 
deduce that aA;/az are small and that over a period of several wavelengths the A;(z) do 
not change much from their original values. Consequently we can put A$(z) = A:(O) 
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on the right-hand sides of (22) and (24) which then become completely determinate 
allowing an approximate integration. 

In many cases this final integration may be difficult to perform analytically so that a 
numerical approach or further approximation must follow. It is to be emphasized that 
the adiabatic approximation consists in assuming that the perturbation is slow so that 
the mode conversion is slight and that this approximation alone will always give a 
solution in the closed form of a definite integral. 

Equations (22H24) are equivalent to the coupled mode equations derived by Snyder 
(1970, (16H18))  and used by Marcuse (1973). 

3. The bent guide 

3.1. Quasimode formalism 

Let us choose an axis which follows the bend of the guide and let z be the distance of any 
point on the axis measured along the curve. If we define a set of mutually perpendicular 
unit vectors so that E J Z )  points along the axis at z ,  E ~ ( z )  is in its plane of curvature, 
perpendicular to E ~ ( z )  and its sense defined by some convention and E ~ ( z )  = E ~ ( z )  x E ~ ( z )  
then 

Y = xE1(Z) + Y E ~ ( Z ) +  E~(z ’ )  dz’ (25) r 
defines any point in space (figure 3). 

Figure 3. Local axes in a bending guide 

At any point z along the guide we construct an imaginary tangential straight guide as 
described and solve the usual wave equations (9)  for its eigenmodes. Because our real 
guide has uniform cross section the solutions E:(x, y) and H:(x, y) will be independent of 
z ,  except insofar as the coordinates x and y refer to the local axes E ~ ( z )  and E ~ ( z ) .  The 
transverse components satisfy the orthonormality relations (13a) and the axial com- 
ponents are again given by (10) and (1 1) .  

We now define quasimodes of the bent guide by 

They satisfy : (i) the boundary conditions along the bent guide ; (ii) Maxwell’s equations 
provided we replace V by 

a a 
Vquasi = E1(Z) -+E2(Z ) -+E3(Z )ayu .s i  ax aY aZ (27) 
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where the operator aquasi/dz ignores the z variation of the axes E(z). Thus the En'(x, y), 
H:(x, y) satisfy equations similar to (5)-(8) : 

For gentle bends the z dependence of the E,' and H,' is slow on the scale of a wave- 
length so that the quasimodes will 'nearly' satisfy Maxwell's equations. 

It is necessary to consider the form of Maxwell's equations in a fixed coordinate 
system, congruent to the local system at z, but accounting for the changing local axes. 
We need to express the true operators, grad, div and curl, in terms of Vquasi which ignores 
the z dependence of the axes. The results (see appendix 3) are 

grad + = Vquasi+--~3(z)-- a 'quasi+ 

1 +a d Z  

1 0 dquasi ' z  div V = Vquasi . V +  - VI . V,a - - ~ 

l + a  l + a  dz 

a 'quasivt V,  curl V = Vquasi x V -  e3 x - --+ -V,a 
l + a  dz l+a 

where 0 = - x / p  if we choose the x axis pointing towards the centre of curvature of the 
bend; p is the radius of curvature of the bend. 

We now make our expansion for the fields 

of the guide in terms of the quasimodes ; the arguments for the legitimacy of this expan- 
sion are as for the imperfect straight guide in 5 2.2. To determine the mode coefficients we 
require that the fields satisfy Maxwell's equations (see (1H4)) using expression (32) for 
the vector operators. Substituting the field expansions (33) in the curl equations (3) and 
(4) we find after some manipulation that 

Similarly, substituting in the div equations (1) and (2) we find 

( 5 - a i k n A n  ) ( ") + A;V,a. ) + (%+ aik,A ;) ( !') + A;V,a. (?I) = 0. 
RL aZ H' Hnt 
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We can show that equations (35) derive from (34) by forming the curl of (34), considering 
the c3 component and using relations (28)-(31). 

Equations (34) determine the coefficients A i  ( z )  uniquely. They are more conveniently 
written using the convention (16). 

We can extract the quantities a A i / a z  by using the orthonormality 
find 

relations (13a) to 

(36) 

where 

D i n  = - dS .  (Y ,  x E,, & H,, x X,) 2 ' S  
with 

X ,  = oik,E,, + E,,Vlo 

and 

Y,, = oik,,H,, + H,,V1o 

and also e,,-,  = exp{i(k,-k,)z}, for instance. 

(37) 

To solve equations (36) approximately for a gently bending guide we use arguments 
similar to those used in section (2.3) to replace the A:(z) on the right-hand side by their 
original values A'(0). The solution may then be found in the closed form of a definite 
integral, although for a guide which bends in a complicated way this final integral will be 
difficult to perform. 

Two general comments are in order. 
The definition (25) does not have a unique inverse and some points in space can have 

more than one coordinate representation. This is not important when we ask for the 
energy distribution among the modes at a point z along the guide. However, when we 
specify the fields at any point in space we need a convention to associate just one set of 
coordinates, (x ,  y ,  z )  with that point. 

Mathematically speaking mode conversion is caused by the quantities V,o and oik,, 
for if these are zero then equations (36) are satisfactorily solved by A'(z) = constant. 
These terms do  have some physical significance ; V,o = - zI /p  mixes the transverse fields 
with the longitudinal fields in (36) and allows for the fact that as the guide changes 
direction the transverse fields are clearly in part developed from the axial fields of the 
adjacent sections of guide and vice versa. oik, = xikJp accounts for the differential 
phase change measured parallel to the axis and at a distance x away from the axis; an 
off-axis point on a plane wavefront travels a different distance from an axial point as the 
wave negotiates a bend. 

3.2. Example 

The waveguide consisting of two infinite parallel perfectly conducting plates provides an 
illustrative example of how the theory can be applied to the bent waveguide. The plates 
are separated by a distance 2d0 and the medium between them has permeability p and 
dielectric constant C. To define a bend in this waveguide we set up local coordinates as 
described in Q 3.1. We assume electromagnetic radiation is propagating in the positive z 
direction and there is no variation in the y direction. For z < 0 the guide is straight 
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and the plates are situated at x = f do .  For 0 < z < L the guide has a radius of curva- 
ture p ;  because of the local coordinate system the plates remain at x = fd, and we use 
this bend to define the positive x direction as directed towards the centre of curvature. 
For L < z the guide is again straight. 

To obtain a solution to any problem of mode conversion in the bend using (36) the 
eigenmodes of a straight guide of width 24 ,  are required. These modes are given in 
appendix 4. 

We look at the specific problem of unit electromagnetic energy in only the even TE 
mode n = c( incident from z < 0 on the bend. We calculate the amplitudes of other 
modes which have energy transferred to them as a result of the bend. For this problem 
the boundary conditions to be applied to (36) are 

' e n  E + o  ( 1 - 6  - 

AZ+(O) = AE+(O) = AZ-(L)  = AE-(L) = 0 
nz2 A,E,'(O) = AFJL) = A,E,-(L) = 0 

(39) 
where the notation describing TE and TM even and odd modes is given in appendix 4. To 
facilitate straightforward solution of (36) we make the approximation of replacing all the 
coefficients A by their values at z = 0. This will be valid as long as L is sufficiently small 
and p sufficiently large and also under these circumstances the quantities Affl-(0), &-(O), 
AFL(0) and Afn-(0) will be of first order and may be neglected. The matrix elements in 
(36) are easily calculated and i t  is found that energy is transferred by this odd deviation 
only to the TE odd modes from the initial TE even mode by the bend. The matrix elements 
connecting TE even and odd modes are given by 

Since the matrix elements are independent of z and the Af:(z) is assumed to be 
constant (36) is now particularly easy to integrate to obtain the mode ampitudes. The 
result is 

n f E E  

where the coefficients A:: refer to the mth odd TE modes and all other coefficients remain 
zero to first order. 

Assuming the coefficients remain small, which is the basic requirement for (41) to be 
valid, it is clear that the coefficients are oscillatory functions and do not steadily grow as 
the radiation negotiates the bend. A gentle bend does not have a cumulative effect and 
the coefficients are not proportional to the length of bend traversed. To gain some insight 
into when the coefficients do  remain small we consider the particular case of mode con- 
version between two low order modes (a, m small integers) and a radiation frequency 
such that these modes are far from cut off. In this situation the coefficients A,E,'(z) have 
an amplitude of oscillation given approximately by (2d/p)(d/R)' where 1 is the free-space 
wavelength of the radiation. The amplitude is of the form we might expect on physical 
grounds and in particular demonstrates that a radius of bend much larger than the 
guide width is required for (41) to be valid. 
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Future work will deal with bends in round dielectric guides or optical fibres but it is 
expected the solutions will retain the same general form. 

4. Conclusion 

We have expressed the fields of an imperfect waveguide in terms of a complete set of 
fields which are adapted to the local form of the guide and whose phase is that acquired 
at previous points along the guide. As a result we have been able to calculate the mode 
conversion caused by local changes along an essentially straight guide or by any bends it 
suffers. 

We have seen that provided the changes are slow or the bends are gentle the modes of 
the guide will themselves distort and power will convert only weakly between them. In 
this case it is thought that a low-order perturbation treatment would over-estimate the 
mode conversion. 

It is interesting to note that the exact equations (22) and (36) can be written formally 
as 

= M(z)A(z) aZ 
where A(z) is a vector whose elements are the quantities A’(z) and M ‘(z) represents the 
coupling matrix. This equation has the formal solution 

A(z) = exp( ff M(z’) dz’)A(O) 

where the exponential is to be interpreted as its power series expansion. 
Our ‘adiabatic approximation’ which consists in replacing the quantities A,’ (z) by 

A’(0) on the right of equations (22) and (36) is equivalent to truncating the expansion 
for the exponential after the second term. The later terms will account for the multiple 
scattering of power between modes. 
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Appendix 1. Derivation of the wave equations for quasimodes 

By separating the fields into their axial and transversf: components : 

E,’ = E ; + z 3 E ; ,  H,’ = H; + E ~ H :  

we may write Maxwell’s equations ((5H8) or (28H31)) for the quasimodes as 

V , .  <E; k ik,eE; = 0 

V, . pH; k ik,pH,: = 0 

( A l . l )  

(A1.2) 
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+ ioP V, x E,; = - E ~ H : ~  
C 

" P  f x VtE; T iknE3 x E; = -- H,; 
C 

io E 
V x H' = --c3E& 

C t nt 

i o r  
c3 x VtHL f ik,cj x Hn: = -E:. 

C 

Operating on equation (A1.3) with V, x (1/p) we find 

1 io 
P C 

Vtx-VtXEnt = - - z ~ x V , H $  

and substituting the right-hand side of this equation into (A1.6) it follows that 

1 02t V,x-V,XE;--Ei = 
P C2 

Operating with (l /p)V,(l/~) ( A l . l )  gives 

o k  
x H:. 

c 

and subtracting this from (A1.7) gives 

okn ik 
c P 

E; = +-EJ x H; f "VtE&. 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

Finally, operating on (A1.4) with f iknc3/p gives 

k,2 ik, o k  -E* +-V,E; = f 2 c 3  xH; 
P n t -  P C 

and on eliminating H: from this and equation (A1.8) it follows that 

1 

P 
pVt x -Vi x E; -V ,  ( :Vi. EE;) - (y-ki) E; = 0 (A1.9) 

which is the desired wave equation. 

E + H, H + - E  the equation for H: is 
Because Maxwell's equations are invariant under the transformation E + p, p + e ,  

E 

1 
tVtX-VtXH$-Vt (A1.lO) 
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Appendix 2. Orthogonality of the quasimodes 

Consider two distinct modes labelled by n, m. For the waves travelling in the c3 direction 
we have 

iocL .+ (VI + iknEg) x E,' = - H,, 
C 

.+ (VI + ik,,a3) x E,' = - Hm . 
C 

Scalar multiplying the above equations by H,' and H,' respectively and subtracting 

(A2.1) 
gives 

Similar consideration of the curl equations for H,' and H,' gives 

H,' . (VI + iknEg) x E,' - H,' . (V, + i k m 4  x E,' = 0.  

E: . (VI + ik,E3) x H,' - E,f . ( V ,  + &,,,E3) x H,' = 0. 

Adding equations (1) and (2) we find, after some manipulation 

(A2.2) 

V,.(E,' xH,'-E,' x H , ' ) + i ( k , , + k , ) ~ ~ . ( E , '  xH,'-E,' x H T ) = O .  

If we integrate the axial component of this expression over a surface perpendicular 
to the (local) direction of the guide then we can use the two dimensional form of the 
divergence to obtain 

n . (E,' x H,' - E,' x H,' ) dl + i(k, + k,) (E; x H,'I - E:, x H; ) . d S  = 0. i s 
The line integral with respect to I is taken round the boundary C of the surface S ;  n is 
the outward normal of this boundary. In deriving this expression we have noted that 
the axial components of the field disappear on taking the axial components of the 
surface integrand. 

In a waveguide bounded by a conductor we can rearrange the triple products in 
the line integral to involve terms in n x E so that taking the conductor as the boundary 
the line integral vanishes. In a dielectric guide we can let the boundary extend to infinity 
where the line integral vanishes if it involves a guided mode. For radiation modes we 
can impose periodic boundary conditions. In any case we are left with the condition 

(A2.3) 

Now if we look instead at the mode with eigenvalue -k, travelling in the - E ~  

(k, + k,) (E; x H,, - E,', x H:) . d S  = 0. 

direction and use our convention 

E,, = E,, = E,, 
H,': = - H -  = H mt mt . 

Then (A2.3) gives 

( k n  + k m )  1 (En, x Hmt - Em1 x Hn,) d S  = 0 

(k - k m )  1 (En, x Hmt + Em, x HnJ d S  = 0 
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from which we deduce that 

(H,,,, x En,) . d S  = 0 m # n. s (A2.4) 

Appendix 3. Differential operators in the coordinate system of the bent guide 

The displacement from a point r, specified by coordinates x, y, z to a neighbouring point 
defined by increments dx, dy, dz is given by 

dr = dxe,(z)+dye,(z)+dze?,(z)+ x-+y-- dz. ! :; 2:) (A3.1) 

If only x or y are varied then the displacements are dx, dy along the local 
axes respectively, so that the transverse component of grad is 

and e2 

a a 
grad, = E ~ ( z ) - + E ~ ( z ) - - .  ax ay 

If only z is varied, however, the total displacement is given by 

(dr), = [ E ? , ( Z ) + X ~ + ~ % )  dz dz dz. 

(A3.2) 

(A3.3) 

Because of the way we have chosen el  and E ,  it follows that ds,/dz = 0 and del/dz is 
parallel or antiparallel to E?,(z). Hence the increment (dr)z is also in the direction E ~ ( z )  
but of magnitude (1 +xe?,(z). ds,/dz) dz. 

The axial component of grad is thus equal to 

de1 X e ? , ( ~ )  aquasi 

i + a  aZ dz P 
where a = XE?,(Z). - = -- -- (A3.4) 

if we choose el(z) pointing towards the centre of curvature. 
Thus 

aquasi (A3.5) a 
grad 4 = V q u a s i 4 - ~ + 3 ( ~ ) ~ 4 .  

The expressions for the operators div and curl in our orthogonal curvilinear co- 
ordinate system then follow (see Morse and Feshbach 1953, pp 21-31) as 

a av, V , . V , ~  div V = Vquasi.  Y---  -+- 
l + a  az l + o  

curl Y = Vquasi x Y-E?, x 

(A3.6) 

(A3.7) 
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Appendix 4. Modes of a parallel plate waveguide 

The modes of a waveguide consisting of two infinite parallel perfectly conducting planes 
with a plane separation 2d are well known. We take the planes to be at x = +d and 
assume the radiation is propagating in the + z direction. With the coordinate system 
so defined the modes fall into groups of TE and TM modes which may be further classified 
as even or odd. Each of these sets has modes corresponding to forward and backward 
waves. To distinguish the different cases subscripts e and o denote even and odd; 
superscripts E and M for TE and TM; and the subscripts n and m are quantum numbers. 
The modes for waves travelling forward are given ; the dependence eikz is omitted. The 
negative z direction waves are obtained using (16) ;  the normalization used is (13a). 

A.4.1. T E  even modes 

H,, = 0 

B 
H,, = 2 COS yenx 

P 

n x  
yen = - d 

n = 1,2 ,3  3 .  

A.4.2. T E  odd modes 

H,, = 0 

B 
H,, = 0 sin yonx 

P 

IL 
Yon = (U-31 . -  d 

A.4.3. T M  even modes 

H,, = 0 

icw 
H,, = --Den sin 6,,x 

C S e n  

H,, = 0 

a,, = (n  -+)- n = 1,2,3,  d 
x 

E,, = 0 

E,, = ioB, sin yenx 

E,, = 0 

E,, = 0 

E,, = 0 

(A4.1) 

(A4.2) 

E,, = 0 

En, = De, COS Benx 
(A4.3) 
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A.4.4 T M  odd modes 

H,, = 0 

icwD,, H,, = - cos SonX 
SonC 

H,, = 0 

nn 
So, = - d 

n = 1,2,3,. . . 

Throughout 

E,, = ikED,, cos Sonx 

E,, = 0 

E,, = Do, sin S0,x 
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